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chapter 13

Collecting and Interpreting Judgments about 
Perceived Simultaneity: A Model-Fitting Tutorial

Kielan Yarrow

1	 Introduction

In this chapter, I consider the simultaneity judgement (sj) as a measure of the 
relative time perceived between two events, outlining the basic experimental 
design, the kind of data it generates, and how these data can be interpreted 
via the parameters of fitted models. After a brief overview of data collection 
methods, I outline the steps involved in both generating model predictions for 
plausible observer models and determining a single set of best-fitting model 
parameters, which maximise the likelihood that the model produced the data. 
I do so in a way intended to make sense to the competent programmer with 
limited formal mathematical expertise, making reference to accompanying 
Matlab code (see book’s GitHub repository). Although I will focus on fitting 
simple detection-theoretic models, I also consider alternative approaches to 
treating sj data, and briefly review the ways in which more complex models 
can be conceived and tested. I subsequently extend my discussion to consider 
a ternary choice, where participants can indicate either simultaneity or one of 
two possible orders, and also a novel task requiring a choice about which of 
two intervals contains the most simultaneous stimulus pair.

2	 Chapter Architecture

In the following sections, I will discuss various abstract concepts that are often 
made concrete within a set of accompanying Matlab code (see book’s GitHub 
repository). To facilitate understanding, I have adopted a cross referencing 
scheme. At various points in the chapter, I include footnotes to code references, 
which are shown within triangular brackets, e.g., <SimultaneityNoisyCriteria 
112>. These indicate that the concept that is being discussed has been imple-
mented in a Matlab function with that name. The number is the line number 
at which the relevant code begins. Given that I am not a mathematician, and 
that this chapter is intended to be comprehensible to non-mathematicians, 
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I have generally avoided including formal equations in the text, except where 
they seem particularly helpful to assist understanding (or with implementing 
the ideas that are being discussed).

3	 Judging Relative Time

As timing researchers, we are often interested in how observers perceive the 
timing of events. For example, we might wish to assess how the timing be-
tween a brief sound and a flash of light is experienced. There are many ways 
in which we might operationalise this assessment, but a classic approach is 
to provide multiple trials containing different relative timings between events 
(hereafter referred to as stimulus onset asynchronies or soas) and have our ob-
server make a simple judgement on each trial. The temporal order judgement 
(toj; e.g., “which came first”) was popular for many years (e.g., Sternberg & 
Knoll, 1973) but recently the simultaneity or sj (e.g., “were they simultane-
ous?”) has become increasingly popular. This may reflect the comparative ease 
with which observers perform these two tasks: Participants tend to say that 
the toj task is harder than the sj task (Love, Petrini, Cheng, & Pollick, 2013) 
and also make more errors than one would predict in the toj based only on 
estimates of sensory precision derived from other timing tasks (García-Pérez &  
Alcalá-Quintana, 2012; Yarrow et al., 2016). Here, I will primarily address the 
sj task in considerable detail, but also briefly introduce some variant tasks to-
wards the end of the chapter.

4	 The Simultaneity Judgement Experiment

The basic sj design is simple: Present observers with pairs of stimuli on each 
trial, specifying the soa between them. Across the experiment, present many 
different soas in a random order, and see how often participants judge each 
soa to be simultaneous. However, we will need to define the range of soas 
that will be used, and how often each is presented. A classic approach is to 
use the method of constant stimuli, in which each possible soa is presented 
an equal number of times across the experiment. In this case, we must still 
select the set of soas to test. Given a finite number of trials, there is an inevi-
table trade-off between the resolution implied by the step sizes we use and the 
range of soas we wish to cover. In the sj task, it is important to adequately 
sample both of the transition points from perceived succession to perceived 
simultaneity. For example, in an audiovisual (av) task, we need to capture the 

�  � Reference García-Pérez & Alcalá-Quintana (2012) is cited in the text but not provided in the reference list. Please check.
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boundary where observers change from perceiving A then V (i.e., perceived 
succession) to perceiving synchrony, and also the boundary where they change 
from perceiving synchrony to perceiving V then A (i.e., back to perceived suc-
cession once again, but now in the opposite direction). For many participants, 
this implies sampling a rather wide range of soas. One potential problem is 
that in order to capture observers who report synchrony over a wide range, we 
end up sampling many times at extreme soas, which may appear trivially non-
synchronous to experienced observers.

For this reason, some researchers prefer to use adaptive methods to select 
the soa on each trial. For the sj, these approaches generally attempt to place 
most trials near to the transition boundaries (from succession to synchrony 
and back again) while still adequately sampling the regions lying both between 
them and at the extremes. For example, Yarrow et al. (2013) used an approach 
loosely based on Rosenberger and Grill (1997) where the distribution from 
which trials are selected starts off being uniform, but is modified after each 
decision based on how the participant responds. The aim is to end up with a 
bimodal distribution that peaks over both transition boundaries. A similar goal 
can also be achieved in various ways via modified and/or interleaved staircases 
(e.g., Arnold, Petrie, Gallagher, & Yarrow, 2015; García-Pérez, 2014).

No approach is perfect. The method of constant stimuli can be wasteful, and 
is likely to establish a Bayesian prior that might bias perception towards the 
centre of the tested range (Miyazaki, Yamamoto, Uchida, & Kitazawa, 2006).1 
Some adaptive approaches imply a statistical dependency between successive 
stimuli, which is not really desirable, and the distribution of soas is likely to be 
uneven, and also to vary between conditions, particularly where they induce 
different biases. Different researchers will weigh these concerns differently. 
Hence, the only advice on which I suspect all researchers in this area would 
agree is that some pilot work with the population of interest is crucial before 
finalising the method for selecting soas across trials.

A further issue that should be considered closely before formal data col-
lection begins is the accuracy and precision with which the desired soas are 
being generated by the lab hardware and software. Achieving precise stimu-
lus timing is generally not trivial despite the assumed capacities of modern 
computers. This chapter is not the place to make a detailed comparison of dif-
ferent rigs and their technical limitations. Instead, I offer some brief advice: 
Check the timing of your stimuli over a fairly large number of trials using an 
oscilloscope or some similar method, and never assume that your computer is 
simply doing what you think you told it to do.

1	 This will also be true of adaptive methods, but here the centre of the test range is more likely 
to conform to a participant’s natural bias.
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5	 Interpreting sj Data with Observer Models

Having run an experiment as outlined above, on each trial you will typically 
have: 1) an soa and 2) a decision (i.e., synchronous or not). Such trial-by-trial 
data from sjs are commonly summarised as the proportion of times each soa 
was judged synchronous.2 You will then be confronted by a set of data similar 
to those plotted in Figure 13.1. These data form the basis of a psychometric 
function, plotting performance (proportion judged synchronous) against the 
tested soa. Often, it is helpful to further summarise the data, for example to 
produce one or more dependent variables for inferential statistical analyses. 
How should this be achieved? Although I will briefly consider some alterna-
tives in Section 9 of this manuscript, the approach I focus on in the majority 
of this chapter is the use of parametric observer models to summarise sj data.

We could summarise data with any mathematical function that looks about 
right, and indeed this is the approach that has often been taken in character-
izing sj data, with the function of choice being a (truncated and/or vertically 
rescaled) Gaussian (Stone et al., 2002; Vroomen & Keetels, 2010). However, this 
arbitrariness comes at a cost. Firstly, if the function has not been derived from 
any meaningful observer model, there is little reason to believe that it will ad-
equately summarise data in a wide range of situations. Secondly, and relatedly, 
the parameters of the model will have only a superficial descriptive mean-
ing. By contrast, the parameters of an observer model have meanings that are 
clearly defined, being tied to the latent processes that have been hypothesised 
to generate the observations. Furthermore, they can be compared with the 
same parameters derived when similar observer models are defined and fitted 
to other tasks (such as the toj).

What do I mean by an “observer model”? In short, I mean a model in which 
a series of well-defined (but often quite abstract) processing steps have been 
hypothesised to intervene between perception and response. Here, I will be 
working with fairly simple observer models. They are based on the assumption 
that each of the two sensory signals to be compared must pass along a neural 
pathway to a decision hub. The latency with which they do so is considered 
to be a random variable (i.e., to vary from trial to trial about some mean value 

2	 This kind of summary is less useful where each soa is only sampled once, as sometimes 
occurs in situations where soas have a random component. An example would be experi-
ments comparing the time of an action to an event (where the event is presented around the 
time that the action is expected to occur, but this cannot be known for certain in advance; 
e.g., Yarrow, Sverdrup-Stueland, Roseboom, & Arnold, 2013). Another example would be data 
generated using an adaptive procedure without a fixed step size. Note that although such 
data will be more difficult to graph, the model-fitting procedures outlined in this chapter will 
still work perfectly well.

0003395223.INDD   299 1/3/2018   5:09:16 PM



Yarrow300

302201

Data Fit

soa (ms)

Pr
op

or
tio

n 
ju

dg
ed

 sy
nc

hr
on

ou
s

3 Parameter 4 Parameter

U
nc

on
st

ra
in

ed
7 

tr
ie

s i
n 

13
5 

tr
ie

s i
n 

13
3 

tr
ie

s i
n 

13
U

nc
on

st
ra

in
ed

(p
os

t)

0
0.2
0.4
0.6
0.8

1

–500 0 500
0

0.2
0.4
0.6
0.8

1

–500 0 500
0

0.2
0.4
0.6
0.8

1

–500 0 500

0
0.2
0.4
0.6
0.8

1

–500 0 500
0

0.2
0.4
0.6
0.8

1

–500 0 500
0

0.2
0.4
0.6
0.8

1

–500 0 500

0
0.2
0.4
0.6
0.8

1

–500 0 500
0

0.2
0.4
0.6
0.8

1

–500 0 500
0

0.2
0.4
0.6
0.8

1

–500 0 500

0
0.2
0.4
0.6
0.8

1

–500 0 500
0

0.2
0.4
0.6
0.8

1

–500 0 500
0

0.2
0.4
0.6
0.8

1

–500 0 500

0
0.2
0.4
0.6
0.8

1

–500 0 500
0

0.2
0.4
0.6
0.8

1

–500 0 500
0

0.2
0.4
0.6
0.8

1

–500 0 500

Figure 13.1	 Example sj data. Each row shows data collected under different instructions 
(see main text). Left column: Data alone. Middle column: Data along with the 
predictions of a best-fitting three-parameter observer model. Right column: Data 
fitted with a four-parameter observer model, allowing asymmetry (i.e., a varied 
slope on each side of the psychometric function). Vertical error bars show 95% 
binomial confidence intervals on the data. Horizontal (grey) error bars surround 
estimates of two model parameters, and show 95% bootstrap confidence inter-
vals. These two parameters represent the transition points from judgements of 
simultaneity to judgements of succession (or vice versa).
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according to a known distribution). The decision hub receives both signals, 
and, thus, has access to the subjective difference in arrival times between them 
(Δt), which is corrupted by their latency noise. Hence, Δt is also a random vari-
able, with a distribution that depends on its two contributors. If they are each 
distributed in a Normal/Gaussian way, Δt is also Gaussian, with a variance 
equal to the sum of the two contributing signals’ variances. The observer then 
interprets Δt on each trial by placing decision criteria, typically one below and 
one above true synchrony, so that values that fall between them can be judged 
synchronous. These ideas are illustrated schematically in Figure 13.2. If, after 
reviewing it, you find that you are struggling with these concepts, I would sug-
gest that you find out about the basics of signal detection theory, for example 
in Macmillan and Creelman (2005), before studying this chapter again.

If the two decision criteria that an observer uses to define simultaneity can 
be held perfectly constant across trials, this model predicts a psychometric 
function that is the difference of two cumulative Gaussians, each having the 
same variance but a different mean (Schneider & Bavelier, 2003). Hence both 
cumulative Gaussians can be described using just three parameters: 

( ) ( )“ ”
High LowP simultaneous C , SOA, C , SOA,=Φ σ −Φ σ 3� (1)

where Φ is the normal cumulative density function. The two means represent 
the positions of the decision criteria (CLow and CHigh) on the soa axis, and the 
single standard deviation (σ) shared by both represents the variability in Δt.

What about if we doubt that our observer can hold their decision criteria 
perfectly constant across trials? If the positions of the two criteria are addi-
tionally considered to be Gaussian random variables (Yarrow, Jahn, Durant, & 
Arnold, 2011), the psychometric function becomes the difference of two cumu-
lative Gaussians with different means and variances: 

( ) ( )High High Low LowP “sim.”  C ,  SOA,    C ,  SOA,  = Φ σ − Φ σ 4� (2)

3	 <SimultaneityNoisyCriteria 12–22>.
4	 <SimultaneityNoisyCriteria 23–33>. Note that this formula is an approximation and will 

break down if the criteria are close together and one is noisier than the other (because the 
cumulative Gaussians will overlap, producing negative predictions for judgements of simul-
taneity). One possible fix is to implement a simulation in such cases and assume that when 
noise in the criteria makes their order illogical, observers default to just using the less noisy 
criterion <SimultaneityNoisyCriteria 46>.
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Hence, four parameters are needed to describe the predictions from this 
model. The means retain the same interpretation as before, corresponding to 
the mean positions of the decision criteria for synchrony, while the variance 
of each cumulative Gaussian now represents the sum of two sources of vari-
ability. Both cumulative Gaussians contain the variance in Δt, but each also 
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Figure 13.2	 Schematic of the four-parameter observer model outlined in the main text. A. 
Each soa is presented many times. Each trial yields a noisy internal response  
(Δt, the subjective soa). Hence the relationship between objective and subjective 
soas is depicted as linear (and in this case unbiased) but shading is used to de-
note the likelihood of each Δt value (darker shading denoting higher probabili-
ties). Cutting vertically through this function for any given objective soa yields 
the Gaussian distribution of resulting Δt values across trials. B. This probability 
density function (pdf) is shown for a −50 ms soa. An observer will judge the trial 
synchronous when Δt falls between two decision criteria (shaded region between 
white dashed lines). The area under a pdf (to the left of some point) is given by a 
cumulative density function, so the shaded region is estimated as the difference of 
two cumulative Gaussians, one integrating all the way to the rightmost criterion, 
the other integrating only to the leftmost one. Shading around the criteria de-
notes additional criterion noise; criterion likelihood is highest where the shading 
is darkest. C. Resulting psychometric function (asymmetrical, due to differential 
criterion noise) with the point defined by the shaded region in Part B highlighted. 
Other points on the function are similarly obtained by integrating the region 
between the two criteria that is obtained at different soas.
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uniquely contains the variance in the placement of the corresponding criteri-
on. To expand slightly: Psychologically, we are now envisaging several contrib-
uting sources of noise – from variability in signal transmission times, and from 
variability in the placement of two decision boundaries. However, when we 
implement the model mathematically it becomes apparent that these psycho-
logical constructs are degenerate should we attempt to have a free parameter 
for each one.5 To make it possible to recover model parameters (as outlined 
later, in Section 6) we must create composite parameters (σLow and σHigh), 
which can vary independently from each other, and from all other model pa-
rameters, but represent a somewhat complex combination of different theo-
retical sources of sensory/decision noise.

These kinds of models have been developed by several authors for differ-
ent tasks (Allan, 1975; Baron, 1969; Gibbon & Rutschmann, 1969; Schneider & 
Bavelier, 2003; Sternberg & Knoll, 1973; Ulrich, 1987; Yarrow et al., 2011). It is 
worth noting that the exact processes that lead Δt to be a Gaussian random 
variable (i.e., independent latency noise in the two signals) can be incorrect 
without invalidating this whole approach. Consider that this kind of model 
also leads to the prediction of a (single) cumulative Gaussian psychometric 
function for tojs. However, the cumulative Gaussian function is actually used 
very widely in psychophysics (whenever a judgement is made that effectively 
divides a continuous decision variable into two halves). This is because all that 
is really being assumed for this fit to be sensible is that the internal response 
that informs the decision (here Δt, but in other applications contrast, intensity, 
orientation, or whatever) has in some way accumulated Gaussian noise. The 
central limit theorem6 of classical probability theory makes this a fairly ap-
pealing conjecture for many sensory domains, regardless of the exact process-
ing steps that might precede a sensory judgement.

So far, I have described an observer model with two variants. The first, with 
three parameters, produces a symmetric psychometric function for sjs. The 
second uses four parameters and can additionally capture an asymmetry in the 
data. I will comment on formal methods for model selection in a later section. 
For now, I want to discuss the meaning of the model parameters, partly just to 
help make the models more interpretable, and partly in order to clarify what I 

5	 By “degenerate”, I mean that such parameters could trade off perfectly with one another, such 
that different combinations lead to the exact same model prediction. This creates a problem 
in model fitting known as non-identifiability.

6	 If you take a large number of random variables and add them together, the distribution of 
their sum will be Gaussian (even if the contributing variables are not).
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think are some misconceptions that have arisen out of the common decision 
to fit an arbitrary function (the Gaussian) to sj data.

To get us going, consider the first column of Figure 13.1. These data come 
from five blocks (of 195 trials each) of an sj experiment, performed by a nov-
ice observer (using the method of constant stimuli, and evaluating synchrony 
between an led flash and a 1000 Hz beep, both 10 ms in duration). In the first 
block, they were simply told to report simultaneity if that is what they per-
ceived. In the second, third and fourth blocks, they were instead told to try 
and successfully guess the stimuli that were truly simultaneous, but given a 
maximum number of attempts (7, 5, and 3 in every set of 13 trials) on which 
they could make use of the “simultaneous” response option. In the fifth block, 
the original (standard) simultaneity instruction was repeated.

What effect did these altered instructions have on the psychometric func-
tion? When unconstrained, this participant, like many others I have tested, 
made extensive use of the synchronous response, so that they reported syn-
chrony almost 100% of the time across a range of soas. If these data were fit-
ted with a Gaussian, we might be tempted to interpret its standard deviation 
(or some linear transform of this value, such as the full width half height) as a 
measure of sensitivity to asynchrony. We might further be tempted to consider 
this parameter equivalent to the slope of the fitted function (or its inverse, the 
just noticeable difference) in a different task, like the toj.

However, consider what happens when instructions require the participant 
to be more conservative with their use of the synchronous response (Figure 13.1 
rows 2–4). If they were simply insensitive across the range of soas that they 
originally reported as synchronous (see row 1) they would still perceive syn-
chrony across this full range. Any constraint on the number of “synchronous” 
responses that could be made would yield a psychometric function with a flat 
plateau across this range, but with a ceiling at a proportion lower than 1.0 (be-
cause the limited responses would now have to be shared out at random across 
this region). This is not what occurs. Instead, the synchronous responses in-
creasingly cluster close to true synchrony. The observer model I have outlined 
in this chapter describes these patterns of data quite naturally, as the result of 
changing decision criteria. Initially, the participant adopts quite loose criteria 
regarding what is synchronous, but the instructions force them to adaptive-
ly tighten them up in response to task requirements.7 Fits are shown in the 

7	 It is easy to envisage other situations that might alter a participant’s decision strategy, for 
example the speed with which they are expected to respond, or their beliefs about the 
proportion of stimuli that are actually simultaneous.

0003395223.INDD   304 1/3/2018   5:09:16 PM



305Interpreting Simultaneity Judgements

302201

middle column for the three-parameter observer model I outlined earlier. The 
first two model parameters capture the position of the decision criteria.

If the width of the sj function is a poor measure of sensitivity, what is a good 
measure? The answer is the slope of the function (on either side), which, under 
the three-parameter observer model, is determined directly by sensory noise 
in the Δt distribution. This measure remains rather similar down the rows of 
Figure 13.1, consistent with our expectation that a change in instructions has 
not somehow radically adjusted the participant’s levels of sensory precision. 
The σ parameter of the sj function, when implemented as I have described 
(as the difference of two cumulative Gaussians), is exactly equivalent to the 
σ parameter of a sigmoidal psychometric function applied to toj data (when 
considered as the prediction of the same model). Note that fitting an arbitrary 
Gaussian provides no such way of dissociating the width of the sj function 
from the steepness of the sj function. The practical importance of this limi-
tation is up for debate (it may, for example, be the case that slope and width 
of the sj function are typically highly correlated, perhaps because noisy ob-
servers tend to choose liberal criteria; c.f. Magnotti, Ma, & Beauchamp, 2013). 
However, conceptually this distinction seems a sensible one to maintain, being 
closely related to the distinction between d-prime (d’) and c made famous in 
classical signal detection theory (Green & Swets, 1966).

I have also discussed a four-parameter model, which is fitted in the right-
hand column of Figure 13.1. Here, the asymmetry in the function arises from 
unequal variance in the placement of the two decision criteria (low and high) 
over the trials of the experiment. These sources of variance would sum with 
sensory noise in the Δt distribution, uniquely at each decision boundary. If 
we  believe that criterion noise may be present, it complicates our interpreta-
tion slightly, because we can never fully separate criterion noise from sensory 
noise in order to determine the magnitude of either one. All we can do is place 
an upper limit on sensory noise (being the smaller of the σ2 estimates associ-
ated with the two sides of the sj function). Note that this conflation of sensory 
noise and criterion noise applies equally to the interpretation of sigmoidal 
functions in toj and other (non-temporal) tasks: If both kinds of noise are as-
sumed to be Gaussian, only their sum can be estimated from a psychometric 
function.

Before I conclude this section, it is important to consider a measure that is 
often derived in timing studies which I have not yet touched upon: The point 
of subjective simultaneity or pss. Classically, this measure is estimated from 
toj tasks, being the soa at which the two order responses are equally likely 
(implying maximum uncertainty about stimulus order). An analysis couched 
in terms of the kinds of observer model I have described here illustrates that 
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this soa represents the combination of a sensory bias (for example, if stimuli 
from one modality in an av task must travel a shorter neural pathway than 
those from the other to reach the decision hub) and a decision bias (in placing 
a criterion to demarcate the two order responses; Sternberg & Knoll, 1973).

In the sj task, a similar ambiguity is present (Yarrow et al., 2011). If a sen-
sory bias exists, it seems plausible that the two criteria demarcating synchrony 
from asynchrony would simply be placed at equal distances from “subjective 
zero.” In that case, we can simply average them to recover a single pss with 
a purely sensory interpretation. Note, however, that such an “equal distance” 
assumption may not be applicable in many situations, particularly if the two 
stimuli are substantially different from one another. For example, two stimuli 
may persist to different extents within the brain, and this might influence how 
decision criteria are set (e.g., “I will call them simultaneous if I experience no 
gap between them”). A weaker claim would be that the pss is very likely to 
lie somewhere between the two criteria. My personal preference is generally to 
report the two criteria, which may in any case provide greater insights about 
changes across conditions than a single inferred pss (Yarrow et al., 2013; Yar-
row et al., 2011). However, reviewers often request (quite reasonably) that the 
pss also be reported for easier comparison with the previous literature. In this 
case, I would suggest that averaging the criteria is a good compromise.

6	 Fitting Models to sj Data

So far, I have alluded to the general notion of fitting observer models to sj data 
in order to derive meaningful parameters, and described two variants of what 
I believe to be a sensible observer model for this purpose. If you are happy 
that the observer models I have suggested serve your experimental needs, then 
you may already have most of what you need from this chapter, because the 
Matlab code to fit these models is available.8 With an intuitive understand-
ing of the models, you can fit them and interpret their parameters (rather like 
having only an intuition about the maths underlying anova is more than suf-
ficient to apply this statistical tool). However, it is possible that you may want 
to fit variants of the models I have outlined (e.g., Yarrow, Minaei, & Arnold, 
2015) or other models entirely, or that you are simply inquisitive about how 
models are fitted to data and wish for a deeper understanding of this process.  
In this section, I will provide a whistle-stop tour. Realistically, I can only touch 
on the topic of model fitting. If you would like to know more, I would highly 

8	 <SimultaneityDiffCumGaussMultistart> and <SimultaneityNoisyCriteriaMultistart>.
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recommend that you take a look at Lewandowsky and Farrell (2010), an ex-
cellent and readable book on this topic from which much of what I will say 
has been gleaned. The Matlab functions provided as part of this chapter owe 
a large debt to the structure that Lewandowsky and Farrell introduce and the 
examples that they provide in their code snippets. Other very useful sources 
for what follows are the now classic papers by Wichmann and Hill (2001a, b) 
on fitting sigmoidal psychometric functions, and Myung’s (2003) short tutorial 
on maximum likelihood estimation.

6.1	 Introduction to Model Fitting: Regression
If you are attempting a chapter like this, I am going to assume that you are 
somewhat familiar with simple linear regression, so I will start there. You will 
recall that regression fits a straight-line model with two (or more) parameters 
to data. The parameters, for simple regression, are the slope (s) and intercept 
(c) of the line defined by the function y = sx + c. I am going to begin with an 
even simpler model, where c is fixed to zero. Hence, the model I am working 
with has just one free parameter (s) and the model’s predictions are captured 
in the equation y = sx.

Data for a regression-style problem come in the form of a vector of values 
of x (x) and the associated vector of values of y (y) so that x1 … n and y1 … n are 
matched pairs, for example the height and weight of a set of n participants. At 
this point I have a set of data and a parametric model with predictions defined 
by an equation. How should I go about finding the value of my parameter s, 
which maximises the fit of the model to the data? For this, I need to consider 
something called the discrepancy function. In the case of regression, the dis-
crepancy function is based on summed squared error. If I pick a value of s, I 
can use my model equation y = sx to find a prediction (about y) for each value 
of x in my data set. Then I can look at the actual value of y associated with 
each value of x in the dataset. Finally, I can subtract each predicted y from the 
corresponding y in the data, square this difference, and sum these values up to 
produce the summed squared error for the model (associated specifically with 
the particular value of s that I have just picked and tested). If I were to repeat 
this process with many values of s (for example stepping up from s = 0 to s = 2 
in small increments) I could save each error value and plot out a discrepancy 
function, showing how discrepant the model predictions are from the data 
for different values of s. What I want to find is the minimum of this function, 
because that will be the value of s that provides the best fit of model to data. 
These ideas are illustrated in Figure 13.3.

For my reduced regression problem (or indeed for much more realistic and 
complex linear regression problems) I wouldn’t actually bother to generate a 
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discrepancy function in this tedious iterative manner. For the toy example, I 
could just about crunch through the necessary maths, using calculus, in or-
der to reach an analytic solution (by first deriving a formal expression for the 
discrepancy function, then differentiating it to find its slope, and finally setting 
this derivative to zero to find the minimum). For a more realistic regression 
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Figure 13.3	 Schematic of process for the generation of a discrepancy function. Here, a toy 
regression problem is illustrated. A. Three data points are shown, along with the 
equation that captures the model’s predictions. B. The model’s parameter, s, is 
varied. For each value of s, error is determined as the distance between the model 
prediction and each data point. C. To provide a metric of model fit, errors for each 
data point are summed and squared. For example, when s = 0.5, errors are 1.5, 
0, and 1.5 ( for the three data points), so squared errors are 2.25, 0 and 2.25, and 
the sum of squared error (sse) = 4.5. Calculating sse for all values of the model 
parameter s allows us to plot a discrepancy function. The best-fitting model 
parameter is the value of s that minimises this function.
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problem, I could thank my lucky stars that competent mathematicians have 
already derived analytic solutions, and simply plug my data into those to find 
the best-fitting parameters in a single step. However, in the case of the sj mod-
els that are our main interest here, we will actually end up doing something 
nearly as crude as the iterative search I have outlined above, because finding 
an expression for the discrepancy function in terms of the model parameters 
is not as trivial as just looking it up in a statistics textbook. Before getting to 
that, however, we need to touch on another important concept that is required 
when we move to fitting sjs: Maximum likelihood estimation.

6.2	 Maximum Likelihood Estimation and the Binomial Data Model
Summed squared error (or the equivalent mean squared error) is an intuitive 
measure of model fit. We can clearly visualise how a model fits poorly if its 
predictions fall at a greater distance from the data. Furthermore, the squar-
ing operation seems a sensible way to punish both positive and negative 
“prediction errors” (rather than having them cancel each other out when we 
sum over data points). However, this goodness-of-fit statistic is not generally 
applicable. Rather, it is a special case of a more generally applicable metric 
(with summed squared error giving the same answer when data are distrib-
uted normally and with equal variance at each level of prediction).9 In general, 
to find best-fitting parameters, what we want to do is to find model param-
eters, which maximise the likelihood that the model at hand generated the data 
(known as maximum likelihood estimation or mle).

Recall that for linear regression, we attempted to find parameters that mi-
nimised the summed squared error. In order to do so, we first had to be able 
to measure the summed squared error obtained with a particular parameter 
value. Analogously, in order to find a fit that maximises likelihood, we first 
need to able to measure the likelihood that a model generated our data given 
particular parameter values. With regression, we broke this process down by 
measuring error at each data point (and then squaring and summing them). 
With mle, we can also begin at the level of a single data point.

In fact, we will begin by considering a single data point and a model with 
a single parameter. In doing so, we are (almost inadvertently) introducing an 
important concept in mle fitting – the data model. The data model is our best 
guess about the statistical process that makes our data noisy. In the case of 
regression, the data model is Gaussian. We assume that our measurements 
are being corrupted by Gaussian noise. However, for synchrony judgements 
this would be the wrong data model. In an sj experiment, the observer can 

9	 Which you will probably recognise as one of the assumptions for linear regression.
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only select one of two options on any given trial. The observer model, which I 
described earlier generates predictions about the probability with which they 
will say “simultaneous” at each soa. Hence, at each soa, our experiment can be 
considered a Bernoulli process (like repeatedly flipping a coin, with a particular 
probability of coming up heads). When you sum the number of times one or 
other outcome is obtained from a Bernoulli process across a set number of 
trials, you get a binomial distribution. Hence, for an sj experiment, at each soa 
we expect our data to follow a binomial distribution, with a probability param-
eter that can be predicted by our observer model. For binomial data (denoted 
X here) the probability of getting exactly k successes (e.g. heads, or “synchro-
nous” decisions) in n trials with a probability of success of p is: 

( ) ( )1 − 
= = − 

 

n kk
n

p X k p p
k

10
� (3)

where: 

( )
!

! !
 

=  − 

n n
k k n k

� (4)

Now we are ready to appreciate what it means to measure the likelihood that 
model a with parameter p generated data point X. Make model a a coin toss 
with parameter p = 0.5 (a fair coin). If data point X showed 7 heads out of  
n = 10, we can make a precise quantitative statement about how likely it is that 
this model generated those data. We do this by plugging the numbers into the 
formula for the binomial distribution above. The answer, as it happens, is 0.1172. 
If we adjusted the probability parameter p of our binomial distribution to 0.1, 
you will probably guess that the model with this parameter will not do such a 
good job of predicting our data, and indeed the calculation returns a value of 
only 0.00008. What this number is telling us is that given the data we observed, 
it is rather unlikely that it was generated from a binomial distribution with a 
probability parameter of 0.1. On the other hand, with a probability parameter 
of 0.7 (i.e. where the prediction looks very much like the data) we obtain a 
likelihood of 0.2668, because this combination of model and parameter value 
is much more likely.

What I have just described is exactly what we need to do at each data point 
(corresponding to each tested soa) when we conduct an mle fit to sj data. 

10	 <BinomialLikelihood 9>.

0003395223.INDD   310 1/3/2018   5:09:16 PM

Administrator
Comment on Text
Could this footnote be moved further to the right, so that it doesn't look like k is being raised to the power 10?



311Interpreting Simultaneity Judgements

302201

We need to take the probability predicted by our model, and use it, along with 
the number of synchronous responses and the number of trials at that soa, to 
obtain the likelihood of obtaining those data given binomially distributed data 
with the predicted probability. However, we still need to scale this calculation 
up in two ways. Firstly, we need to make this assessment for all data points, as 
I outline next, in order to generate the likelihood that the model generated the 
complete data set. Secondly, we need to perform this whole evaluation repeat-
edly, for the sets of probability values predicted by our observer model as we 
change that model’s parameters. In this way, we can create a likelihood func-
tion that can be used as a discrepancy function. I outline that process in the 
next section.

How do we move from the likelihood that this predicted probability yielded 
this many synchronous judgements out of this many trials (i.e., a single pre-
diction and a single data point) to the likelihood that a full set of predicted 
probabilities (one per soa) gave rise to a full set of data points? We need to 
perform the calculation at each data point and then multiply the obtained 
probabilities together (because the probability of several independent events 
all occurring is simply their product). However, there are practical reasons for 
doing this in a slightly different way, not least the fact that when you multi-
ply lots of probabilities together you soon end up with a very small number 
indeed, which can be tough for computers to represent. You may or may not 
recall that the logarithm of a product of one or more numbers equals the sum 
of the logarithm of each. Hence it is standard practice to calculate log prob-
abilities, and sum them across data points.11 We could then convert this back 
to a probability for the overall prediction, but given that we are looking for the 
maximum likelihood value, and log likelihood increases monotonically with 
increasing likelihood, it’s more typical to simply carry on working with the log-
likelihood values when we search for a best-fitting set of model parameters.12

11	 E.g., <SimultaneityNoisyCriteriaWrapperForFMin 103–113>.
12	 Actually, working with log likelihoods derived from the log of the equation for a binomial 

distribution imposes an unnecessary computational burden, because one of the terms 
(“N choose K”) depends only on the data, not on the model’s predictions, so will never 
vary as model parameters are changed. Hence it is not going to be relevant to finding the 
best-fitting parameters. In practice, we therefore tend to drop this term to speed things 
up. This is known as a “kernel” log-likelihood calculation. Using a kernel won’t matter at 
all if you limit yourself to making comparisons between models fitted to the same data 
using the same kernel, but it will matter if you want to interpret the absolute value of log 
likelihood (or likelihood) for the best-fitting parameters. Fortunately, we don’t generally 
need to do that. See e.g., <SimultaneityNoisyCriteriaWrapperForFmin 121–124>.
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Before I move on to this process, I want to briefly touch upon one impor-
tant feature of likelihood as a metric of goodness of fit: It is very sensitive to 
deviations from extreme predictions. What I mean by this is that if a model 
predicts probabilities of virtually zero or virtually 1 (as observer models often 
do) the likelihood of observing even a single trial at odds with this prediction 
is vanishingly small. What this means in practice is that a single lapse by an 
observer (say, pressing the wrong button by mistake) will have a dispropor-
tionately large effect on the resulting model fit (Wichmann & Hill, 2001a). For 
this reason, it is often worth considering incorporating a “lapse rate” parameter 
into our observer models. However, extra parameters are generally undesir-
able for various reasons, so a compromise position is to simply fix a small but 
reasonable lapse rate, which then adjusts model predictions at extreme soas. 
The code that accompanies this chapter incorporates a fixed lapse rate of 1%.13 
Essentially, model predictions are tweaked slightly to range from a very small 
probability of saying simultaneous to a very high probability of doing so with-
out ever getting as low as 0 or as high as 1.

6.3	 Finding Best-Fitting Parameters
So far, I have tried to explain how we determine the (log) likelihood that a set 
of model predictions (i.e. predicted probabilities at each soa) generated a set 
of corresponding data. However, the probability of saying “synchronous” that 
an observer model predicts at each soa depends on the parameters fed into 
the model. What we want is the set of parameters that generates the set of 
predicted probabilities that maximise the likelihood that the model generated 
the data. One very labour-intensive way to go about finding them would be 
to iteratively modify each parameter at all levels of the other parameters, de-
termine log likelihood, and repeat to sample the entire parameter space. This 
approach, known as a grid search, is very similar to the one I outlined in my 
toy regression example. That model had just one parameter, and hence gener-
ated a discrepancy function that could be visualised in two dimensions (Figure 
13.3). If my observer model had just one parameter, I could do something very 
similar and generate a log-likelihood function amenable to a 2D plot. The main 
difference would be that I would be looking for the maximum, rather than the 
minimum, of this function.

Even with a single parameter, this approach is slow, particularly if you want 
a high-resolution search and have little idea about the range within which your 
best-fitting parameter lies. However, with two parameters, it is necessary to it-
erate through all reasonable values of one parameter at each reasonable value 

13	 E.g., <SimultaneityNoisyCriteriaWrapperForFmin 93–94>.
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of the other (i.e., all combinations of two parameters). I then end up with a 
discrepancy surface that must be visualised in 3D. With more parameters, my 
discrepancy function becomes very hard to visualise and, more importantly, 
the number of points that must be searched in a grid search grows exponen-
tially. Hence a grid search is not very practical for the observer models I discuss 
here, with three and four parameters. Fortunately, many algorithms exist to 
help with searches of this kind. The most famous is the Nelder-Mead simplex 
search (Nelder & Mead, 1965).

The intuition for this approach is simple. Set a starting point (i.e. a reason-
able guess for each parameter) and establish error of fit. Then, test a few more 
points in the vicinity to find their errors. Apply some geometric rules to try 
and figure out the slope of the discrepancy surface in this small region. Then, 
crawl down this slope, testing new parameter combinations as you go and re-
applying the rules, in order to move towards a minimum. For a log-likelihood 
search, the approach needs to be tweaked slightly before the simplex algo-
rithm will work, because we are seeking a maximum, not a minimum. Howev-
er, simply inverting the obtained log-likelihoods is sufficient.14 The set of rules 
embedded in the algorithm will then guide it to a best-fitting solution without 
having to sample the discrepancy surface exhaustively.15

You don’t really need to know any more than that to perform a simplex 
search, as functions to implement it are readily available. However, you might 
want to find out a bit more in order to appropriately set the various options 
that these functions let you vary. One important fact to bear in mind is that a 
simplex search may struggle when the discrepancy surface is not smooth and 
well behaved. In particular, if there are local minima that vary from the global 
minimum, the simplex is likely to home in on the local minimum in the re-
gion where it started to search and get stuck there. A good sanity check for 
any search procedure is to use the model that is to be fitted to generate some 
data (based on a known combination of parameters) and then see if the fitting 
procedure recovers the model parameters successfully when initiated from 
various different start positions. In my experience, simplex searches often fail 
in this regard. In an attempt to overcome this issue, the code associated with 
this chapter actually combines grid-search and simplex-search approaches, by 
initiating a separate simplex search from each parameter combination defined 
by a grid search.16

14	 E.g., <SimultaneityNoisyCriteriaWrapperForFmin 126 & 47>.
15	 E.g., <SimultaneityNoisyCriteriaWrapperForFmin 44>.
16	 E.g., <SimultaneityNoisyCriteriaMultistart 138–182>.
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6.4	 Confidence Intervals around Model Parameters
For comparisons involving groups of participants, recovering a set of best-
fitting parameters for each participant in each condition is usually sufficient, 
and the standard error can then be computed across the sample (usually as an 
implicit part of common approaches to statistical inference like anova). How-
ever, sometimes we wish to have an idea about how well parameters are being 
estimated for each participant. I will outline a couple of popular approaches.

Firstly, we can make use of a result from asymptotic statistical theory (i.e., 
theory that is true when our sample size in infinite), which (basically) tells us 
that there is a close relationship between the curvature of the log-likelihood 
surface at the point where we obtained the best-fitting parameters and the stan-
dard errors of those parameters. The intuition is that if changing a parameter 
by just a little bit makes the fit a lot worse, the parameter is tightly constrained 
and probably well estimated. In this situation, the point of best fit effectively 
sits in a steep-sided hole on the (negative) log-likelihood discrepancy surface 
(hence curvature is high). Formally, the curvature of the log-likelihood surface 
is captured by something called the Hessian matrix (a matrix of second-order 
partial derivatives). We can’t work that out exactly without (at least) an ana-
lytic expression for the discrepancy function, and we don’t have one for the 
kinds of observer model I have described here. However, we can approximate 
the Hessian using numerical methods (by measuring changes in log-likelihood 
in the best-fitting region via a series of small steps). Having done so, the inverse 
of the Hessian provides a covariance matrix for the model’s best-fitting param-
eters, and the main diagonal values can, thus, be square rooted to estimate 
standard errors (which can then be straightforwardly converted to confidence 
intervals).17

It’s questionable whether results from asymptotic statistical theory are ac-
tually going to hold for psychophysics experiments with fairly low numbers of 
data points and trials (Wichmann & Hill, 2001a). Hence a popular alternative 
approach is to estimate confidence intervals via bootstrapping. Bootstrapping 
theory, described in detail in Efron and Tibshirani (1994), tells us (roughly) that 
if we resample from a data set repeatedly with replacement to generate a new 
“bootstrap” data set of the same size, calculate a statistic of interest, and then 
repeat many times, the resulting distribution will allow us to make inferences 
about the standard error of that statistic. In the case of sj models, a reasonable 
approach is to resample the data (known as non-parametric bootstrapping), 
fit the model to each resample, and record the parameters on each of around 

17	 E.g., <SimultaneityNoisyCriteriaWrapperForFmin 53–63> and <SimultaneityNoisyCrite-
riaMultistart 219–224>.

0003395223.INDD   314 1/3/2018   5:09:16 PM



315Interpreting Simultaneity Judgements

302201

1999 such iterations to form parameter distributions. If these distributions are 
symmetric, we can pretty much just read values straight out of them to form 
confidence intervals (e.g., the 50th and 1950th values out of 1999 will give us a 
roughly 95% confidence interval). If they are not, we must do something more 
complicated, with the best choice being the bias-corrected and accelerated 
(BCa) approach. Because of the large number of fits that are required, 
bootstrapping is fairly slow. If the experiment contains many trials, the BCa 
method makes it even slower (because it incorporates additional “jackknife” 
resampling, implying one further fitting iteration for almost every trial).18

The code accompanying this chapter offers options to generate confidence 
intervals on fitted parameters. Confidence intervals sometimes imply 
statistical inference, as for example when they fail to overlap some value and 
thus imply that our statistic differs significantly from that value. However, in 
sj experiments we are more likely to want to ask a question such as whether 
a particular parameter differs between two conditions for a single observer. 
To answer this kind of question, you will need to modify or develop the code. 
If we take the example of whether parameters vary across conditions, my 
recommendation would be to adopt a permutation test approach.

To do so, take the trials from both conditions and think of each trial as a 
card in a deck of cards. Making sure you keep each trial intact (i.e., without 
breaking the link between soas and responses) shuffle the trials and then deal 
them at random into two new piles, each representing a pseudo-condition. 
If your original conditions contained different numbers of trials, make sure 
the two pseudo-conditions match the size of the original conditions. For each 
pseudo-condition, perform a model fit. Now calculate the difference between 
model parameters in the two pseudo-conditions. This is the value you want to 
retain. Now repeat this whole process many times. What you are forming is a 
null distribution of the expected difference between model parameters that 
would occur just by chance. You can then compare the difference you actually 
obtained against this null distribution to generate a p value for your difference 
of interest.

7	 Variants of sj Observer Models

In this chapter, I have presented two variants of a latency-based observer mod-
el applied to the sj task. Both assume that a single soa will generate an inter-
nal response (Δt) that is a Gaussian random variable. Both assume a simple 

18	 E.g., <SimultaneityNoisyCriteriaMultistart 225–386>. Note that Matlab has inbuilt func-
tions, which could have done most of this if you have the statistics toolbox extensions.
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decision rule (“say synchronous if Δt > Clow and < CHigh”, where C indicates 
decision criteria). The more complex variant also allows the two criteria to vary 
from trial to trial as Gaussian random variables. There are many variants of 
this kind of model that could be envisaged, some of which are considered in 
Sternberg and Knoll (1973) and Ulrich (1987).

This kind of model is generally presented as a consequence of two sensory 
signals travelling along independent pathways to a decision centre, with sen-
sory noise reflecting variations in their latencies from trial to trial. However, 
the same predictions emerge if we assume the sensory noise accrues via some 
other process than latency variations (e.g., spike rate stochasticity) as long as 
the end result is a Gaussian Δt distribution. This is an attractive feature, be-
cause in fitting our data, we may not want to commit to anything more than 
the fairly defensible position that noisy representations are quite likely to be 
Gaussian (a hallmark of classical signal detection theory).

If we stick closer to the process model in which sensory noise is latency noise, 
it is reasonable to argue that the Gaussian assumption must be a simplification. 
Latencies cannot be negative, so modelling them as Gaussian cannot be com-
pletely correct (although if the variance of the latency distribution is fairly 
small relative to the length of the neural pathway, the density below zero 
would be negligible). An alternative observer model based on the same basic 
principles has been developed by García-Pérez and Alcalá-Quintana (2012a, b, 
see also Chapter 12, this volume) who use exponential latency noise in place 
of Gaussian noise for each signal. The result is a four-parameter model, which 
can generate an asymmetric psychometric function for sjs and thus capture 
the same sorts of features as the four-parameter model presented here, but  
via the mechanism of an asymmetric Δt distribution (rather than criterion 
noise). The authors are happy to provide fitting code for their model, which 
can also be scaled up to include extra parameters that deal with keying errors. 
They have a chapter in this volume.

Their model yields two noise parameters (one for each signal) and two fur-
ther parameters, which seem distinct from the two criteria described here, 
but are in fact mathematically equivalent. García-Pérez and Alcalá-Quintana 
(2012a, b) describe τ, a processing delay parameter, basically what most re-
searchers think of as the pss, and δ, a resolution parameter, which defines the 
range of values judged synchronous. The two criteria I have described here 
map directly onto their parameters, being τ−δ and τ+δ (recall that I noted how 
a pss could be recovered by averaging the positions of the two criteria). The 
differences in terminology seem to be driven by different theoretical positions. 
Whereas I view the decision criteria as being malleable components of the 
decision process, García-Pérez and Alcalá-Quintana (2012a, b) seem at least 
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partly committed to a form of “low-threshold” or “triggered-moment” model 
where soas below some threshold cannot be recovered, so that an observer 
can only guess about order.19 However, either kind of model can easily be fitted 
and interpreted from either theoretical perspective.

8	 Choosing between Observer Models and Rejecting Participants

Two further reasonable questions one might ask are: 1) could my observer 
model have generated these data? and 2) does another observer model de-
scribe the data better? Model comparison is a large and complex topic, so once 
again, what I have to say here should be treated as a brief introduction rather 
than a comprehensive summary.

Let’s begin by considering a metric I have not yet mentioned: Deviance. De-
viance (sometimes called G2) is a measure based on log likelihood, but which 
looks rather more like summed squared error, in that it is zero for a perfectly 
fitting model and large/positive for a poorly fitting model. Formally, deviance 
is two times the difference in log likelihood between the saturated model and 
the model with our current set of parameters. A saturated model is one that 
exactly predicts the data (which can always be accomplished by a model that 
has one parameter per data point). Hence it represents the situation with the 
maximum possible log-likelihood when predicting this particular set of data. 
Deviance is closely related to a simpler calculation (–2 × log likelihood) that 
forms the basis of a couple of well-known metrics for model comparison (the 
Akaike information criterion, aic, and the Bayesian information criterion, 
bic) and indeed is occasionally defined this way. That’s because we are of-
ten only really interested in differences (in Deviance, or aic, or bic) between 
models, and the log-likelihood of the saturated model gets subtracted out in a 
comparison between two models (because it has contributed to the deviance 
in the same way for both) so calculating it is not necessary.

However, if you want to say something about the goodness of fit of a model 
without relating it to any other model, based on asymptotic statistical theory, 
you do need to calculate deviance properly. Asymptotically, it turns out that 
the deviance of a model fitted to data when that model actually generated those 
data follows a chi-square (χ2) distribution, with degrees of freedom equal to 

19	 García-Pérez and Alcalá-Quintana’s commitment to this account is a little unclear, be-
cause they often let δ vary across experimental conditions, suggesting flexibility more 
akin to a criterion-based account. It may be that they believe a low-threshold exists, but 
that synchrony is often additionally reported beyond this hard limit.
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the number of data points minus the number of model parameters (note: for 
data points, think of the number of soas tested, not the number of trials!) 
Hence, if we want to know if our model might have generated our data, we 
could check the best-fitting deviance against such a distribution to see how 
improbable this is. Unfortunately, it seems that this asymptotic result may not 
always be accurate for data sets of a size typical in psychophysics experiments 
(Wichmann & Hill, 2001a).

For this reason, Wichmann and Hill (2001a) suggest using Monte-Carlo 
simulation to assess whether a model is plausible. The idea is as follows. First, 
find the best-fitting set of model parameters. Second, create a set of data based 
on a simulation of the experiment in which that model generates the data. 
Third, find a fit to that data, and record the deviance.20 Fourth, repeat steps two 
and three many times to generate a distribution of deviances that you would 
expect when that model actually generated those sets of data. Finally, look to 
see where the deviance of your actual fit sits on this distribution in order to 
assess if the model is likely to have generated the data. This approach is not 
implemented in the code accompanying this chapter, but should be feasible 
for you to implement yourself if you are interested in assessing whether your 
data are under or over- dispersed relative to what would be expected. However, 
although certainly informative, I find it a rather high bar to set if you are, for 
example, deciding whether to use a model or to include a participant. After 
all, even the most ardent defender of a particular observer model would be 
unlikely to argue that it really represents a complete characterisation of the 
psychological processes that are being modelled. I think that a model fit can be 
informative even if the model is a simplification of absolutely everything that 
observers do in experiments. To paraphrase George Box: All models are wrong, 
but that doesn’t mean that they are not useful (Box, 1979).

With this in mind, my preference is to ask a slightly different question: 
Does this observer model seem to fit the data better than some other sim-
pler account? This question is well aligned with what we generally do during 
statistical inference. For example, a simple (i.e., two parameter) regression is 
generally considered significant if it explains the data significantly better than 
an even simpler one-parameter model (i.e., just the mean).

What can we say about the deviance statistic as model complexity in-
creases? Well, in general a complex model produces a better fit than a sim-
ple model whether it is correct or not, because more free parameters mean 
a greater ability to describe patterns that are actually just random noise  

20	 It doesn’t actually have to be deviance. Log likelihood, or -2 × log likelihood would be fine 
too.
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(at least for nested models).21 Hence, simply finding a decrease in deviance 
for a more complex model is not enough to show that it is better. We need 
to instead show that the decrease in deviance is greater than that expected 
by chance. Although the asymptotic result I outlined above for expectations 
about absolute deviance may be unreliable with psychophysical data sets, an-
other rather similar result may be more robust even when N is low. The change 
in deviance from a simpler to a more complex model also follows a χ2 distribu-
tion, but with degrees of freedom equal to the difference in free parameters 
between the models, as long as the models are nested.

The two observer models for sjs that I have discussed in this chapter are 
nested, so it’s possible to make a decision about whether to use the more com-
plicated one by comparing the deviances they each return. I have previously 
found the four parameter-variant to be justified for av data with led flashes 
and brief tones (Yarrow et al., 2011).

The code accompanying this chapter also includes an option, when fitting 
either of these models, to additionally fit a simpler model as a method of de-
ciding whether to retain a participant as part of a group-level analysis. The 
logic here is that if a participant is simply guessing rather than taking the ex-
periment seriously, they will be equally likely to say “synchronous” at any soa, 
which can be captured by a straight horizontal line (effectively a model with 
just one parameter: their overall tendency to use one of the two keys). However, 
in sj experiments we may also need to exclude participants who showed some 
ability to discriminate, but on only one side of the sj function, implying that 
we failed to sample extreme enough soas to capture both of their transitions 
from synchrony to asynchrony. Although such an observer may have been con-
centrating well and following instructions, the model will return very poorly 
constrained and extreme parameter estimates. Hence, to look for this pattern, 
we should fit an intermediate model, a cumulative Gaussian, which can cap-
ture usable performance on one or other side of the sj function, but not both. 
Only if the full sj model provides a better fit relative to this partial performance 
model should the participant be retained (c.f. Yarrow et al., 2013).

I have now discussed what I believe is a reasonable approach to model 
comparison for nested models. I will finish this section by very briefly men-
tioning some possible approaches when models are not nested. Firstly, models 
can be compared using either aic or bic. Both of these statistics are equal to 
−2 times the log likelihood of the best-fitting model, but with a penalty applied 

21	 Two models are nested if (basically) the more complex model can generate all the same 
sets of predictions that the simpler model can generate, plus a bit more. For example, 
stepwise regression compares nested models. Strictly, this approach requires that models 
are nested and that one of them is correct.

0003395223.INDD   319 1/3/2018   5:09:16 PM



Yarrow320

302201

to the model with more free parameters. For aic the penalty is simply 2 per 
parameter, whereas for bic it is (generally) slightly greater per parameter and 
depends on the number of data points in the fit. bic is actually an approxi-
mation to the Bayes factor, an (arguably) more sophisticated form of model 
comparison in which model performance is considered across all parameter 
combinations, not just at the best-fitting values. A second tactic would be to 
develop a Monte-Carlo simulation approach similar to that outlined above 
in order to produce a distribution of expected deviance improvements if the 
more complex model is fitted to data generated by the simpler model. As men-
tioned earlier, model comparison is a substantial and complex field, and there 
are several other approaches that could be considered beyond those touched 
on here.

9	 Alternative Approaches to Interpreting sj Data

Fitting a model is a nice way to summarise a set of sj data with a few meaning-
ful parameters. However, those parameters are only likely to tell you something 
useful if the model is (at some level) correct. The fact is, there is no consensus 
about whether any given observer model is correct, or about how literally pa-
rameter values should be interpreted. These considerations might lead us to 
consider doing away with any kind of parametric fit. For example, we could 
analyse the data without a pre-processing step, so that proportion judged si-
multaneous at each soa is the dependent variable, or we could attempt a non-
parametric fit to derive summary measures.

The former approach is used occasionally, sometimes as a supplement to 
a parametric fit. For example, Zampini et al. (2005) simply applied an anova 
to proportion simultaneous data, incorporating their set of soas as a second 
factor (the first factor being the two conditions they were comparing). Interac-
tions and main effects can then be interpreted to explain differences between 
conditions, although it may be somewhat challenging to explain what is go-
ing on in a succinct manner, particularly when many conditions are tested. 
Another concern is the application of anova in a situation where data are 
clearly non-normal. Proportion/percentage data are likely to be skewed (and 
less variable) at the extremes (i.e., where most participants report synchrony 
not at all or all of the time). It might be possible to address this concern using a 
more complex variant of the generalized linear (mixed) model with an appro-
priate link function (in place of an anova), an approach that has been applied 
successfully for data yielding sigmoidal psychometric functions (Moscatelli, 
Mezzetti, & Lacquaniti, 2012).
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If summary measures akin to thresholds and psss are desirable, an alterna-
tive to a parametric fit would be to simply draw straight lines (or use some 
form of spline interpolation) between data points and make some informal 
estimates on that basis (e.g., a window where the proportion judged simul-
taneous falls above 0.75, or the point at which the highest proportion of 
simultaneity judgements is reached). However, noisy data tend to make this 
problematic, as the psychometric function may then appear non-monotonic 
on one or both sides. More sophisticated non-parametric approaches have 
been developed, but mainly for the more common situation of a sigmoidal 
psychometric function (e.g., Miller & Ulrich, 2001; Zchaluk & Foster, 2009). 
In some cases, it is possible to adapt these procedures to the sj task (Lee & 
Noppeney, 2011).

10	 Ternary Data

Before the sj reached its current level of popularity, several authors had con-
sidered expanding the toj to a ternary task in which the two order responses 
where supplemented with a “simultaneous” response option to indicate un-
certainty about order. In fact, latency-based observer models for this situation 
are formally identical to those I have discussed for the sj. In early analyses, 
the ternary task was typically considered to permit two binary divisions of 
the data, each yielding a sigmoidal psychometric function. In the first such 
division, the psychometric function was constructed by plotting the propor-
tion of times that observers report either “simultaneous” or “A then B” (i.e., the 
proportion of times they said anything other than “B then A”). In the second 
division, it was constructed by plotting the proportion of times that observ-
ers report only “A then B.” These two psychometric functions are displaced 
from one another along the soa axis. Their difference represents the occasions 
when the observer responded synchronous. Note that this provides an intui-
tive link regarding why the sj function can be described as the difference of 
two cumulative Gaussians.

In fact, we can fit observer models directly to these data without re-
arranging them into a binary format. The observer models make predictions 
directly about a ternary division, which equates to predicting two out of three 
probability values at each soa (with the third being defined by the fact that 
probabilities sum to 1.0). The code accompanying this chapter includes op-
tions to perform such a fit based on the two models (i.e., the three and four 
parameter variants) that I described in Section 4. From a practical perspective, 
there is only one conceptually challenging point of difference. It is the data 
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model (discussed for a binary fit in Section 6.2). Because there are three pos-
sible choices, the appropriate data model (applied at each soa) is no longer 
the binomial distribution, but rather the multinomial distribution, which can 
provide an exact likelihood of obtaining any particular combination of prob-
abilities that divide N choices into three bins when the actual probabilities of 
selecting each bin are known (or rather, for fitting purposes, predicted).22

11	 Dual-Presentation sj Data

Several authors have investigated the use of a dual-presentation sj task in 
which two bimodal stimuli are presented (one after another) and compared, 
for example by reporting which one was (most) synchronous (Allan & Kristof-
ferson, 1974; Powers, Hillock, & Wallace, 2009; Roseboom, Nishida, Fujisaki, & 
Arnold, 2011). This is a form of what would, in classical signal detection theory, 
be described as a two-alternative forced choice (specifically the two-interval 
forced choice variant). However, that designation is ambiguous (about wheth-
er there are two presentations or two response categories) and has been ap-
plied to cases where either or both of the possible qualifying conditions are 
met, which is probably why the dual-presentation sj task has ended up being 
given a variety of names (e.g., temporal 2AFC; forced-choice successiveness 
discrimination; 2IFC sj, where the classic sj is referred to as 2AFC sj in the 
same paper). I will label it the 2xSJ.

The simplest form of the 2xSJ would have a synchronous standard on every 
trial along with a non-synchronous test pair. Based on the kind of observer 
models discussed in this chapter, the resulting psychometric function (plotting 
the probability of judging the standard more synchronous than the test against 
the test’s soa) is U-shaped and centred over the pss. This approach represents 
a reasonable way to derive estimates of inverse precision (i.e., σΔt) but a fairly 
poor way to estimate the pss, because having a synchronous standard on every 
trial provides feedback about objective synchrony. A simple solution is to also 
include a range of standards as well as a range of tests, in a roving standard 
design.

The observer model can be fitted to data even when both standard and test 
are non-zero, as described in detail by Yarrow et al. (2016; see also García-Pérez 
& Peli, 2014). To present all of the data, it is necessary to plot a function for 
each standard soa (using several standard plots, or a single 3D plot), which is 
somewhat cumbersome, but not a major obstacle to using the task. A simple 

22	 <MultinomialLikelihood 9>.
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observer model with three parameters captures pss, sensory noise and an in-
terval bias (i.e., a tendency to select one interval in preference to the other 
under uncertainty).

The 2xSJ task provides estimates that correlate fairly well with equivalent 
parameters estimated using tojs, sjs, and ternary tasks. However, each trial 
takes longer than in those single-presentation tasks, which makes experi-
ments more onerous. There are a few reasons why the roving-standard 2xSJ is 
still worth considering. Firstly, it asks about synchrony explicitly (unlike the 
toj) and by requiring relative judgements it reveals a point of maximal syn-
chrony perception (whereas the sj and ternary tasks often reveal a range of 
soa values that are classified as synchronous). Secondly, it can be added in 
to a single-presentation task (as a follow-up question every two trials), which 
somewhat mitigates the burden of additional experimental time. Finally, a case 
can be made that it will be more resistant to some forms of decision-level bias 
(Morgan, Grant, Melmoth, & Solomon, 2015; Morgan, Melmoth, & Solomon, 
2013). As with the other tasks I have described, code to fit data from the 2xSJ 
accompanies this chapter.23 For further information, read the comments there 
and consult Yarrow et al. (2016).

12	 Conclusion

In this chapter, I have outlined the benefits of fitting formal observer models 
to judgements about simultaneity, and described how this can be achieved us-
ing Matlab code (see book’s GitHub repository). In doing so, I have presented 
one particular observer model in some detail, and highlighted the fundamen-
tally subjective nature of the sj task, which requires us to think carefully about 
how both the strategic decisions and perceptual sensitivity of a participant 
can affect their psychometric function. I have gone on to supply a brief over-
view of appropriate models for several closely related timing tasks. I hope I 
have also provided enough of a tutorial regarding bespoke model fitting and 
evaluation to allow the interested reader to go forward and explore their own 
models of perceived simultaneity. Modelling may seem intimidating, but in 
fact, a good understanding of just a few basic concepts (which is best gained 
through practical exploration) will take you a long way, providing tools to 
engage more fully with the timing literature. This is an endeavour I would very 
much encourage!

23	 <TwoAFCSimultaneity_3PEq_Multistart_rawdata>.
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